Media Library

News Release Media

BOTS - Preliminary KCB Heliborne Geophysics Interpretation

Kavango Resources plc (LSE: KAV), the Southern Africa focussed metals exploration company, is pleased to announce preliminary interpretation for geophysical survey data on its property in Botswana's Kalahari Copper Belt ("KCB"), from South Africa based New Resolution Geophysics ("NRG").

Figure 1, NRG Bouguer gravity images with Kavango licences overlain on regional satellite Bouguer gravity data. Exploration targets and deposits together with their respective resources (data sourced from company web sites). Most deposits and exploration targets on the KCB appear to be associated with basin and sub-basin margins and bounding structures.

Figure 1, NRG Bouguer gravity images with Kavango licences overlain on regional satellite Bouguer gravity data. Exploration targets and deposits together with their respective resources (data sourced from company web sites). Most deposits and exploration targets on the KCB appear to be associated with basin and sub-basin margins and bounding structures.

 

Figure 2, NRG bouguer gravity images overlain on regional geology with magnetic 1VD image. Doubly plunging folds (domes) can been seen in the regional geology and locally in the gravity data within the Kara Antiform. Major thrusts appear to form bounding faults on either side of the gravity high.

Figure 2, NRG bouguer gravity images overlain on regional geology with magnetic 1VD image. Doubly plunging folds (domes) can been seen in the regional geology and locally in the gravity data within the Kara Antiform. Major thrusts appear to form bounding faults on either side of the gravity high.

 

Figure 3, Sentinel 2B 16bit_20231020_0000000_2500mm_multispectral image over Karakubis area, clearly showing well defined fold patterns.

Figure 3, Sentinel 2B 16bit_20231020_0000000_2500mm_multispectral image over Karakubis area, clearly showing well defined fold patterns.

 

Figure 4, NRG RTP High Pass Filter images overlain on regional geology with magnetic 1VD. The northern and southern limbs of the Kara Antiform define the upper and middle D'Kar sequences with the lower D'Kar underlying the core of the fold. Local shears and faults cause dislocations in the stratigraphy forming potential trap sites for mineralisation.

Figure 4, NRG RTP High Pass Filter images overlain on regional geology with magnetic 1VD. The northern and southern limbs of the Kara Antiform define the upper and middle D'Kar sequences with the lower D'Kar underlying the core of the fold. Local shears and faults cause dislocations in the stratigraphy forming potential trap sites for mineralisation.

 

Figure 5, LANDSAT 9 16bit_20231019_0000000_15m_multispectral image over Sandfire Motheo Mine (pink dot) & A4 (yellow dot [can't see the yellow dot]), showing similar fold patterns to the SW of the mine to those observed and mapped at Karakubis.

Figure 5, LANDSAT 9 16bit_20231019_0000000_15m_multispectral image over Sandfire Motheo Mine (pink dot) & A4 (yellow dot [can't see the yellow dot]), showing similar fold patterns to the SW of the mine to those observed and mapped at Karakubis.

 

Figure 6, NRG AEM image overlain on regional geology with aeromagnetic 1VD shading. The northern and southern limbs of the Kara Antiform can be seen closing around and plunging towards the southwest. A large shear trending SW-NE in the centre of the Antiform appears to separate blocks of contrasting resistivity and conductivity.

Figure 6, NRG AEM image overlain on regional geology with aeromagnetic 1VD shading. The northern and southern limbs of the Kara Antiform can be seen closing around and plunging towards the southwest. A large shear trending SW-NE in the centre of the Antiform appears to separate blocks of contrasting resistivity and conductivity.

 

Image